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EXTENSION OF THE RSVS TO THREE DIMENSIONS

While there exists a wide range of parameterisation methods for aerodynamics

in two dimensions, in three dimensions the parameterisation offering is dom-

inated by free-form deformation (FFD) methods. Thanks to their deformative

formulation, an existing discrete geometry can be used as the starting point, maintaining

its properties. By preserving surface characteristics, deformative methods allow a high

level of accuracy provided the initial geometry is of high quality; however this precludes

topological design of aerodynamic bodies. Generating the initial geometries and discreti-

sations is a significant challenge in its own right, with the water-tightness of surfaces

not generally guaranteed by the CAD tools used to define them.

These challenges mean that aerodynamic topological optimisation of an entire aircraft

or wing is unlikely to be a reality in the near or medium term. However, there is scope

for the aerodynamic topological design of local features; topological optimisation of wing

tips would allow feathered or split winglets more complex than that on the Boeing 737-

MAX to be explored (Figure 1.1a and Figure 1.1c). An effective topological aerodynamic

optimisation framework also offers the possibility of radically new designs in applications

to: Formula 1 (Figure 1.1b), unmanned aerial vehicles, commercial strut-braced wing

design, and, internal engine design. No current optimisation framework for external

aerodynamics supports the exploration of 3-dimensional topological changes, in large

part because of the dominance of deformative parameterisation methods.

The area constrained length minimisation formulation of the restricted snakes volume

of solid (RSVS) offers a natural extension to 3D as the minimisation of the surface area of

a geometry under volume constraints. During design and testing of the two dimensional
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CHAPTER 1. EXTENSION OF THE RSVS TO THREE DIMENSIONS

(a) Winglet of the Boeing 737-
MAX, from Boeing [4].

(b) Front wing of the SF-15 Ferrari F1
car, from Giorgio Piola [30].

(c) Eagle in flight.

Figure 1.1: Examples of complex topology in aerodynamic applications.

RSVS; features which would extend to 3D were prioritised. The flexibility and generality

of the RSVS formulation, useful features in two dimension, becomes necessary for

efficient exploration of 3 dimensional design spaces where isotropic tessellation of the

geometric space would be prohibitively expensive.

A new ‘restricted surface (r-surface)’ tool is developed, generalising the restricted

snake (r-snake) to higher dimensions, this new method allows the robust evolution and

containment of objects of arbitrary topology. This r-surface is then integrated with a

marching procedure minimising the area of the surface under localised volume fraction

constraints to form the restricted surface volume of solid (3D-RSVS) parameterisation.

Properties of this new parameterisation are discussed, highlighting similarities with the

generation of constant mean curvature (CMC) surfaces and minimal surfaces. Design

of volume of solid (VOS) layouts is treated in Section 1.4.2, and finally the 3D-RSVS is

integrated into an optimisation framework.

1.1 Restricted Surfaces Volume of Solid for
3-Dimensional Aerodynamic Parameterisation

This section presents how the 3-dimensional restricted surface volume of solid (3D-RSVS)

parameterisation translates sets of volume fraction design variables specified on a fixed

grid into closed surfaces of varying topology. For optimisation frameworks to exploit the

3D-RSVS efficiently, this process must reliably produce smooth features at a resolution

below the grid on which VOS values are defined. To achieve this level of smooth control,

the 3D-RSVS profile is defined as: the closed surface of minimum area that will match

the volumes of the design variables. It is built using a restricted surface (r-surface). The

r-surface is a method developed in this thesis for “vertex marching" which allows efficient
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1.1. RESTRICTED SURFACES VOLUME OF SOLID FOR 3-DIMENSIONAL
AERODYNAMIC PARAMETERISATION

topology handling and is tolerant of any layout of VOS design variables. The 3D-RSVS is

implemented in C++, the code is made available by the author on GitHub1 under the

LGPL-3.0 license2.

1.1.1 Governing Equations of the 3D-RSVS

By using a formulation which is very closely related to the two dimensional parameteri-

sation, the 3D-RSVS maintains many of the benefits of that parameterisation, notably:

intuitiveness, homogeneity, smoothness, compactness and flexibility. The parameterisa-

tion process is shown in Figure 1.2 with slices through the domain indicating the volume

fractions.

The 3-dimensional RSVS geometries are defined as the surface with the smallest area

matching the VOS in every cell. The mathematical formulation of this problem is given in

Equation 1.1. This system is analogous to the effect of a tensile force “shrink-wrapping"

the required VOS in each cell. The general form of the 3-dimensional RSVS problem is

developed for a closed surface S which is constrained in m design cells (C j) to have a

specified volume fraction Vj. These variables are represented graphically in Figure 1.2b

for a 2 dimensional grid.

min
Ï

S→x(t,u)

∥∥∥∥∂x
∂t

× ∂x
∂u

∥∥∥∥dt du

s.t.
Ñ

(S∩C j)

dx dydz =Vj ∀ j ∈ {0, · · · ,m}
(1.1)

The rules above are the natural extension to 3-dimensions of the 2D-RSVS: the length

minimisation has become a surface minimisation and the area constraints become volume

constraints. The design variables that control the surface are volume fractions specified

in each cell of a design grid which remains unchanged during an aerodynamic topology

optimisation procedure. The next sections detail how the mathematical program is solved

using restricted surfaces to produce an effective shape and topology parameterisation

method.

Unlike the two dimensional case; the 3D-RSVS does not support exact analytical

solutions. The 3D-RSVS surfaces are part of a class of problems known as constant

mean curvature (CMC), a super-class of “minimal surfaces”, for which explicit analytical

1https://github.com/payoto/rsvs3d and https://github.com/farg-bristol/rsvs3d
2Available at: https://opensource.org/licenses/lgpl-3.0.html accessed on 05/06/2019.
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CHAPTER 1. EXTENSION OF THE RSVS TO THREE DIMENSIONS

(a) VOS design variables as grey-scale and 3D-RSVS surface; 1 corresponds to a completely full cell and 0
an empty cell.

(b) VOS definitions for Equation 1.1

Figure 1.2: Example RSVS profile and design grid with label definitions for the governing
equation (Equation 1.1).
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solutions are available for specific boundary conditions [28]. In the RSVS process the

boundary conditions, as understood in the study of minimal surfaces, are not known

explicitly as they are the result of the marching of the snake or surface. This additional

level of complexity makes general analytical solutions to the 3D-RSVS unlikely; however

comparison of specific parameterised layouts to existing analytical solutions is performed

in Section 1.2. A more substantial discussion of minimal surfaces and CMC surfaces is

done in Section 1.4.1.

1.1.2 The Restricted Surface Method for 3D Topology Evolution

Development of a 3-dimensional, volume of solid based, topologically flexible parame-

terisation requires an efficient method for evolving topologically complex geometries.

The 2D-RSVS used restricted snakes, a type of parametric active contour developed

by Bischoff et al. [3, 19]. Previous work in the extension of parametric active contour

methods to 3 dimensions have been successful, notably the development of topologically

flexible T-surfaces by McInerney et al. [22] for medical image segmentation. This sub-

section outlines the extension of the r-snake to evolve as a surface on 3-dimensional

grids, and how this may be used to solve the 3D-RSVS governing equation. A complete

description of the development of these r-surfaces is provided is Section 1.3.

1.1.2.1 Topology evolution of polyhedra

To build the 3D-RSVS parameterisation method the restricted surface must be evolved

until it solves the governing equation. The restricted surface is a vertex marching proce-

dure where the control points (called snaxels) are constrained to move on a predefined

grid, as a consequence properties of the snaking grid controls the number of snaxels and

the resolution of the geometry. By marching the snake on a grid finer than the VOS grid,

smooth features below the resolution of the volume design variables can be recovered.

This allows a high degree of geometric flexibility with few design variables.

In order to maintain the water-tightness of the surface the connectivity elements

between snaxels, are restricted. The original rules developed by Bischoff and Kobbelt [19]

for contours have been generalised to surfaces in 3D space into the following:

• No 2 snaxels connected by a r-surface edge are on the same snaking grid edge;

• No 2 r-surface edges connected by a snaxel are in the same snaking grid face;

• No 2 r-surface faces connected by r-surface edge are in the same snaking grid cell.
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CHAPTER 1. EXTENSION OF THE RSVS TO THREE DIMENSIONS

Figure 1.3: Evolution of a restricted surface in a 43 snaking grid spawned in two locations
under a unit velocity field.

These connectivity rules, can be used to maintain a meaningful surface when two surfaces

collide or when a surface crosses through a vertex of the snaking grid. Figure 1.3 shows

the evolution of restricted surfaces initialised from two vertices in a 43 snaking grid. The

two surfaces collide on the third step, and the connectivity is adjusted using the rules

specified above.

While the rules for building the r-surface guarantee the formation of water-tight

surfaces, it does not guarantee that faces will be flat. This is because the r-surface is

controlled by the positioning of its vertices with the rest of the geometry derived from
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AERODYNAMIC PARAMETERISATION

Figure 1.4: Evolution of the triangulation (edges in orange) of a restricted surface (in
black) using the centroid defined in Equation 1.3. Step numbers are in the top left corner.

the connectivity information forced by the snaking grid. Flat surfaces are required for

the reliable calculation of volume and area of the polyhedron, faces with more than 3

edges need to be triangulated. Consistency and smoothness of the triangulation through

changes of connectivity is achieved by triangulating faces through point c̄; this point

is the mean position of face vertices normalised by edge length. Figure 1.4 shows the

evolution of the chosen triangulation process through the evolution of the restricted

surface.
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CHAPTER 1. EXTENSION OF THE RSVS TO THREE DIMENSIONS

pi

pi+1

pi−1 gi,1
∆gi

di

(a) Close-up view of snake and
snaxel

(b) Full view of a closed r-snake

Figure 1.5: R-snake contour (in red) with snaxels (in blue) evolving on the snaking grid
(dashed line) [Repetition of Figure ??].

1.1.2.2 Integration of the r-surface with the area minimisation problem

To drive the position of the restricted surface the original continuous area minimisation

problem (Equation 1.1) is discretised in terms of the r-surface and snaxel variables,

becoming the mathematical program of Equation 1.2. The discretisation process ex-

presses the integrals in terms of the triangulated r-surface using six properties of the

r-surface geometry and the snaxel positions. The first three of these properties are part

of the movement algorithm; the last three properties of the snaxels are derived from

connectivity and grid information. These properties are: the snaxel index (i), used to

reference it in all operations; the normalised position along an edge (di ∈ [0,1]); the

scalar velocity along that edge (vi ∈ R); the snaxel position in Cartesian coordinates

(pi); and; the direction of travel of the snaxel (∆gi) and the vertex of origin (gi,1). These

properties are represented graphically for a restricted snake in Figure 1.5a. They are

used to calculate and differentiate AS,k and VS,k, respectively the area and volume

contributed by each triangle forming the polyhedron. These definitions are integrated

into Equation 1.1 to form the discrete mathematical program used to drive the r-surface

in Equation 1.2.

min
d

q∑
k=1

AS,k
(
p0,k,p1,k,p2,k

)
with pi,k (d)

s.t.
jS(q jS)∑
k= jS(1)

VS,k
(
p0,k,p1,k,p2,k

)+ jC(q jC)∑
k= jC(1)

VC,k
(
g0,k,g1,k,g2,k

)=Vj

(1.2)

Building an RSVS surface requires the positions d of the r-surface snaxels satisfying

Equation 1.2 to be found. As is the case in 2-dimensions the objective function and the

8



1.2. 3 DIMENSIONAL PARAMETERISATION RESULTS

constraint are readily differentiable. This is critical to solving the area minimisation

governing equation as it allows the use of efficient gradient based optimisation method.

While the area and volume could be differentiated by hand, the task would be tedious

and error prone. The differentiation of AS,k, and VS,k with regard to pi,k was carried

out for triangles using the MATLAB symbolic toolbox. This allows C code to be directly

generated for the mathematical functions, ensuring that no mistake is made when

calculating Jacobian and Hessian. The same process is followed for the derivatives of

pi,k and c̄ with regard to d.

This formulation has the benefit of being very general, it can be tackled on an

arbitrary volume grid with any underlying snaking grid with any optimisation method.

This generality guarantees a high degree of flexibility in the range of shapes that can

be represented. Later sections will show how the r-surface is implemented and how

the 3D-RSVS parameterisation can be constructed using a Newton step sequential

quadratic programming (SQP) procedure. The next section shows parameterisation

results using the 3D-RSVS on Cartesian grids and an empirical study of the behaviour

of the parameterisation.

1.2 3 Dimensional Parameterisation Results

This section presents profiles generated using the Restricted Surface method driven by

SQPsolving the area minimisation, volume constrained, governing equation. The VOS

values are manually specified; these results serve to validate the implementation of the

3D-RSVS, and to highlight the topological flexibility of 3D-RSVS on small layouts of

Volume of Solid cells.

1.2.1 Practical Surface Generation

The RSVS rules only specify how to evolve a surface but provide no guidance regarding

the initialisation. For aerodynamic applications and more generally the design of external

boundaries it is effective to start at the faces which touch a void and a non-empty volume

cell. This provides fast convergence and intuitive behaviour to a designer. Internal voids

can then be created if the restricted surface has failed to explore non-full volume cells.
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CHAPTER 1. EXTENSION OF THE RSVS TO THREE DIMENSIONS

Figure 1.6: Geometries defined by a single volume cell with VOS values from 0.1 to 0.9.

1.2.2 Validation of the RSVS Parameterisation

While an analytical study of the 3D-RSVS problem has not yet been performed it is

natural to expect its behaviour to be similar to the two dimensional parameterisation:

for shapes defined by few design variables the geometry is hypothesised to be spherical

patches. To validate the implementation of the RSVS shapes designed with a single VOS

cell were generated and are shown in Figure 1.6. This single volume cell is refined into

a 103 snaking grid. These shapes clearly show that the RSVS converges to spherical

profiles up to volume fractions of 0.5. Beyond that volume fraction, the surface comes in

contact with the VOS cell boundaries and starts to form a cuboid with round edges.

To supplement the qualitative observations from Figure 1.6, the volume and area of

3D-RSVS bodies is compared to spheres of equivalent volumes in Table 1.1. This table

shows that for low values of requested volume fraction (up to 0.5) volume convergence is

good (/ 10−5). As the required VOS approaches 0.5 the area approaches that of a sphere,

the area error dropping as low as 0.34% for a sphere of volume 0.5. This is expected:

the discretisation of the sphere produced by the 3D-RSVS depends on the number of

intersections the geometry has with the background snaking mesh. As the object gets

smaller, the number of intersections reduces and the discretisation becomes worse. This

observation is confirmed by generating a sphere of volume 0.5 on a finer snaking grid

with 243 cells; on this snaking grid the area match was even closer at 0.09% (Table 1.1).

For objects coming in contact with the edges of the design space volume convergence

10



1.2. 3 DIMENSIONAL PARAMETERISATION RESULTS

Table 1.1: Numerical comparison of the areas and volumes of 3D-RSVS geometries and
spheres of the same target volume.

Fig.
Expected Sphere Properties RSVS geometry Error

Observation
V Diameter Area Volume Area Volume Area

1.6 0.1 0.576 1.042 0.100 1.054 3.46E-13 -1.16%
0.2 0.726 1.654 0.200 1.672 3.23E-06 -1.08%

1.6 0.3 0.831 2.167 0.300 2.176 -2.03E-07 -0.40%
0.4 0.914 2.625 0.400 2.638 2.62E-05 -0.48%

1.6 0.5 0.985 3.046 0.500 3.057 -2.45E-07 -0.34%
1.6 0.6 1.046 3.440 0.599 3.456 1.02E-03 -0.44% at border
1.6 0.7 1.102 3.813 0.700 3.871 3.52E-04 -1.54% at border

0.8 1.152 4.168 0.798 4.362 2.03E-03 -4.66% at border
1.6 0.9 1.198 4.508 0.893 4.840 8.28E-03 -7.36% at border
1.10 0.75 0.895 5.030 0.750 5.052 2.70E-04 -0.45% 3DVs 2 spheres

0.5 0.985 3.046 0.500 3.049 -1.04E-06 -0.09% 243 snaking grid

is due to the different treatment of snaxels at the edge of the design space. Indeed these

cannot be treated as normal design variables for the area minimisation process as they

cannot move further outwards but still must be free to move back inwards. A change to

the solver of the quadratic program might be needed to support inequality constraints for

those snaxels which can only move in one direction. Approaches similar to QPOPT (the

internal quadratic solver of SNOPT) [15] are being investigated to improve convergence

speed.

1.2.3 Generation of Shapes of Aerodynamic Interest

With the implementation of the 3D-RSVS equations validated, manually specified aerody-

namic surfaces were generated as a test for the smoothness of the geometries produced by

multiple design variables. The surfaces chosen were the Sears-Haack body, the truncated

Sears-Haack body and a wing with aerofoil cross-sections.

Figure 1.7 shows a Sears-Haack body, and the truncated Sears-Haack body is pre-

sented in Figure 1.8. These surfaces use a [10, 2, 2] layout of VOS cells and 43 snaking

refinement. As was the case in 2 dimensions the RSVS produces mostly smooth profiles

but can be forced to produce a sharp corner or a sharp edge by using small volume

fractions, providing accurate positioning of the leading and trailing edges. In Figures 1.7

and 1.8, the final volume error is displayed on the background volume mesh; showing that

the 3D-RSVS process can very precisely match the volume fractions (ev ∈ [10−13, 10−6]).

Drag minimisations of wings are common cases within the aerodynamic shape opti-
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1.2. 3 DIMENSIONAL PARAMETERISATION RESULTS

Figure 1.7: Sears-Haack body represented using 40 VOS cells in [10, 2, 2] layout. The
colour in the colours in the background present the level of convergence of the r-surface
on the correct volume.

Figure 1.8: Truncated Sears-Haack body represented using 40 VOS cells in [10, 2, 2]
layout. The colour in the colours in the background present the level of convergence of
the r-surface on the correct volume.

misation community [8, 18]. Figure 1.9 presents a coarse representation of a wing using

a [2,5,6] layout of design variables. This provides 10 volume fraction values to design

the cross-section of the wing at six span locations. One of the side effects of building

surfaces of minimum area is that long and slender profiles are not initially possible. To

allow elongated bodies, the longer dimension of the surface needs to be de-weighted in

terms of area. This can be achieved either inside the shape generation by multiplying

the coordinates by individual weights or by externally altering the aspect ratio of the

design grid.

Three dimensional optimisation usually relies on deformative methods starting
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CHAPTER 1. EXTENSION OF THE RSVS TO THREE DIMENSIONS

Figure 1.9: Coarse wing represented using 60 VOS cells in [2, 5, 6] layout. The colour in
the colours in the background present the level of convergence of the r-surface on the
correct volume.

from a high quality discretisation. This presents a challenge in evaluating the RSVS:

as a constructive parameterisation method it cannot easily benefit from an existing

geometry. Three approaches are envisaged to resolve this issue: progressive design space

refinement; the integrated parameterisation approach which was pioneered in Section ??;

or, partial design space representations. Of these, hierarchical design variables have

been shown to be effective in three dimensions to optimise aerodynamic features at a

range of geometric scales concurrently [20, 21]. Despite these possibilities, design of an

entire wing is not the primary use case of the RSVS: the RSVS will be targeted at cases

where its topological flexibility, is an asset not a drawback.

1.2.4 Topological Flexibility of the 3 Dimensional RSVS

The minimal case to show the topological behaviour of the 3D-RSVS requires 3 VOS cells.

Figure 1.10 presents the geometries generated by varying the value of the central VOS

cell. Between values of 0.3 and 0.1 the topology of the geometry changes from a single

body to 2 spherical bodies. The case generating two spheres is added to Table 1.1 and

shows a similar geometric convergence on spheres as the cases discussed in the previous

Section (1.2.2).

Figure 1.11 shows 4 different surfaces generated by the 3 dimensional RSVS. On

the left the volume grid on which the volume fractions are specified (thick lines) and

the snaking grid (thin lines) on which the restricted surface evolves. These surfaces

illustrate some of the more complex topologies that can be achieved with a small set of

design variables. While these topologies may not be of interest for external aerodynamic
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Figure 1.10: 5 different final geometries defined by 3 volume cells. The VOS at each end
are kept constant while the volume fraction of the central cell is varied from 0.1 to 0.9.

Figure 1.11: Four different final topologies defined by 27 VOS cells in a 33 layout (on the
left). These cases illustrate the topological and smooth shape control 3D-RSVS provide
with few design variables. To aid understanding of the topologies being represented slices
through the centre of each dimension are provided.
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optimisation, these could have application in the design of pipes or structures.

1.3 Implementation of the 3D-RSVS

This section delves into some of the detail of the 3D implementation motivating choices

and exploring properties of the 3D-RSVS system. In particular the novel r-surface method

is described and its implementation is outlined; finally the integration with the area

minimisation defining the 3D-RSVS is presented. The implementation of the 3D-RSVS

is done in C++ and is made available on GitHub [27] for contribution and download

under the GNU Lesser-GPL license.

1.3.1 Rules for the Evolution of Water-Tight Surfaces

At the core of a three dimensional shape and topology parameterisation method must

be an efficient method for topology evolution, compatible with the smooth and compact

support requirements of aerodynamic parameterisation. The explicit evaluation of inter-

sections between discrete or analytical geometries is a difficult and expensive problem.

The r-surface simplifies those calculations by constraining control vertices to a grid,

forcing intersections to happen point-to-point along edges. This property is very desirable

in three dimensions as it reduces the cost of computing intersections to a search through

a hashed map and, if necessary, a floating point comparison.

The extension of the restricted snake to surface objects relies on reformulating the

two dimensional connectivity rules into a generalisable form. Recall that these rules, as

described in [3], are:

1. No two connected snaxels can be on the same edge;

2. Snaxels must travel out of the profile.

In terms of connectivity the second rule manifests itself as: a snaxel cannot be connected

to two edges which are part of the same face of the snaking grid. Examples of invalid

connections are shown in Figure 1.12.

The initial connectivity rules can be formalised in terms of the relationship between

r-snake elements (vertices and edges) and the underlying snaking grid elements (vertices,

edges and faces). This observation enables the systematic extension of the connectivity

rules to three dimensions. If two connected r-snake edges cannot be part of the same face

of the snaking grid, it follows that two faces of a restricted surface cannot be part of the

same volume cell of the underlying snaking grid.
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(a) The snaxels in red are con-
nected and on the same edge.

(b) The snaxel in red travels
tangentially to the profile.

Figure 1.12: Invalid snaxel connections, image from [19].

The rules for this restricted surface (r-surface) are formalised into the following:

1. No two snaxels connected (by an r-surface edge) can be on the same snaking grid
edge;

2. No two r-surface edges connected (by a snaxel) can be in the same snaking grid
face;

3. No two r-surface faces connected (by r-surface edge) can be in the same snaking
grid cell.

The 3-dimensional rules stated above can be further generalised to handle the

marching of a N-dimensional restricted-polytope, including support for topology change.

In all dimensions, there is a single special case for vertices which are 0-dimensional

objects and all other rules are the same relative to the dimensionality of the object being

handled. The N-dimensional rules are the following:

1. No two restricted-polytope 0-dimensional object connected (by a restricted-polytope

1-dimensional object) can be on the same snaking grid 1-dimensional object;

2. No two restricted-polytope z-dimensional object connected (by a restricted-polytope

(z-1)-dimensional object) can be in the same snaking grid (z+1)-dimensional object

for z ∈ {1, · · · , N}.

The 3-dimensional rules were shown to work robustly and efficiently for arbitrarily

complex geometries evolved on tetrahedral and hexahedral snaking-grids; the imple-

mentation is expected to work for all convex snaking grids (no internal angle above

π). Algorithms, data structures and pseudo code for the current implementation of the

r-surface are available in Section 1.3.2. Figures 1.13, 1.14 and 1.15 show the evolution of
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Figure 1.13: A restricted surface in a Cartesian snaking grid is evolved under a uniform
velocity field. The surface is in red, the black outlines are a section through the surface
at z = 0.15.

Figure 1.14: A restricted surface in a Cartesian snaking grid is evolved under a uniform
velocity field with reflections at the design space boundary. The surface is in red, the
black outlines are a section through the surface at z = 0.15.
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Figure 1.15: Test of the restricted surface process and rules: a restricted surface in a
Cartesian snaking grid is evolved under a velocity field with random variations. The
surface is in red, the black outlines are a section through the surface. The proposed
restricted surface algorithm is robust and fast for arbitrary complex topologies.

r-surfaces spawned from 6 distinct vertices. Between these figures, only the algorithm

for snaxel velocity update differs, respectively: unit velocity, unit velocity with reflection

at the boundary and random velocity with reflection. This was performed as a test of the

topological flexibility of the r-surface process, validating its use to evolve the 3D-RSVS

surface.

The r-surface relies exclusively on connectivity information to detect collisions avoid-

ing the need for expensive, floating point, intersection calculations. This process is

efficient, robust and scalable: in Figure 1.15 the evolution features up to a thousand

topological changes per step, processed in around a second per step.
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1.3.2 Algorithms for the Implementation of the R-Surface

While the rules defining a valid r-surface have been stated in Section 1.3 they must now

be implemented into a method for surface evolution. The restricted surface method relies

on the data structures presented in Figure 1.16 and three core algorithms:

• clean the r-surface connectivity to have only valid elements (Algorithm 1);

• cut and merge geometries to evolve topology (Algorithm 3);

• spawn at snaking grid vertices (Algorithm 5).

The removal of invalid connections in the restricted surface relies on the combination

of grid elements, and, the removal of orphaned elements. These two steps applied in

the correct order for vertices, edges, faces and volume cells allows invalid connections

to be pruned; Algorithm 5 presents the steps necessary to clean up those connections.

In addition to these core processes two composited algorithms are used to complete the

r-surface method:

• snake initialisation to generate the starting restricted surface (Algorithm 6);

• grid vertex crossing to enable the progression of the r-surface through the

snaking grid (Algorithm 4).

Algorithm 1 Restricted surface algorithm for spawning at a snaking grid vertex.
1: To spawn at a vertex vxi
2: for Each snaking grid edge e j in vxi.edgeind do
3: Add a new snaxel on edge e i
4: end for
5: for Each snaking grid face f j in vxi.edgeind[].surfind do
6: Add a new edge in face f j
7: Connect this new edge to snaxels on edges f j.edgeind
8: end for
9: for Each snaking grid cell c j in ve i.edgeind[].surfind[].voluind do

10: Add a new face in volume element c j
11: Connect this new face to edges in faces c j.surface
12: end for
13: Connect all faces with a new volume element.
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Indexint
{

VOS Target VOS VOS error Volumedouble
{

Surface indices (surfind)vector<int>
{

(a) Data structure of a restricted surface volume element (d = 3).

Index Snaking grid volume index (parentind)int
{

VOS Target VOS VOS error Areadouble (for 2D)
{

Edge indices (edgeind) Volume indices (voluind[2])vector<int>
{

(b) Data structure of a restricted surface face element (d = 2).

Index Snaking grid face index (parentind)int
{

Lengthdouble
{

Vertex indices (vertind[2]) Surface indices (surfind)vector<int>
{

(c) Data structure of a restricted surface edge (d = 1).

Index Snaking grid edge index (parentind)

Origin vertex (fromvert) Destination vertex (tovert)

Frozen status (isfreeze)

int


Normalised distance (d) Normalised speed (v)double

{
Length l[3]vector<double>

{
Edge indices (edgeind)vector<int>

{
(d) R-surface vertex (snaxel) element data structure (d = 0).

Vector of volume objects Vector of face objects

Vector of edge objects Vector of snaxel objects

vector<bool> are snaking grid vertices inside the r-surface?

(e) R-surface data structure.

Figure 1.16: Definitions of the data structure used in the restricted surface process.
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Algorithm 2 3D-RSVS element combination algorithm
1: if Elements (e1 and e2) of dimension n are identified for merging then
2: Replace e2 by e1 in all connectivity lists.
3: Mark e2 for deletion.
4: end if

Algorithm 3 Restricted surface algorithm for cutting/merging of bodies.
1: for All snaxels si and s j carried by the same grid edge do
2: if si and s j are in the same location and are not moving apart then
3: Mark snaxels si and s j for combination.
4: end if
5: end for
6: Apply the snaxel combination. This creates invalid connections.
7: Run the connectivity clean-up of Algorithm 5.

Algorithm 4 Restricted surface algorithm for crossing through snaking grid vertices.
1: for All snaxels si do
2: if si.d== 1 and si.v> 0 then
3: Mark snaking grid vertex si.tovert for spawning.
4: else if si.d== 0 and si.v< 0 then
5: Mark snaking grid vertex si.fromvert for spawning.
6: end if
7: end for
8: for Each snaking grid vertex vxi marked for spawning because of snaxel(s) si1,··· ,im.

do
9: Apply the spawning algorithm (Algorithm 1) at vertex vxi

10: end for
11: Apply the algorithm for topology cutting/merging (Algorithm 3) to all the new snaxels.

12: Run the connectivity clean-up of Algorithm 5.
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Algorithm 5 Restricted surface connectivity clean-up process (notation defined in Fig-
ure 1.16).

1: while Changes of connectivity are detected do
2: for All snaxels si do
3: if Snaxel si is disconnected from the r-surface then
4: Mark snaxel si for deletion
5: end if
6: end for
7: Remove snaxels marked for deletion.
8: for All r-surface edge e i do
9: if Edge is connected to a single vertex: e i.vertind[1]== e i.vertind[2] then

10: Mark edge e i for deletion.
11: else if e i.vertind[1].parentind== e i.vertind[2].parentind then
12: Mark snaxels e i.vertind 1 and 2 for combination.
13: Mark edge e i for deletion.
14: end if
15: end for
16: Apply snaxel combination operations (Algorithm 2).
17: Remove edges marked for deletion.
18: for All r-surface edge e i do
19: if e i.vertind[l]== e j.vertind[m] and e i.parentind== e j.parentind then
20: Mark edges e i and e j for combination.
21: end if
22: end for
23: Apply snaxel combination operations.
24: for All r-surface face f i do
25: if f i.edgeind[l]== f j.edgeind[m] and f i.parentind== f j.parentind then
26: Mark faces f i and f j for combination.
27: end if
28: end for
29: Apply face combination operations.
30: end while
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Algorithm 6 Restricted surface algorithm for initialisation at the boundary of the void
domain.

1: Note: identify vertices around which lie between region of empty VOS and non-empty
VOS.

2: for All faces f i in the snaking grid and the VOS grid do
3: if f i.voluind[0].target== 0 and f i.voluind[1].target> 0 then
4: Mark all vertices connected to this face for spawning f i.edgeind[].vertind
5: end if
6: end for
7: for Each snaking grid vertex vxi marked for spawning because of snaxel(s) si1,··· ,im.

do
8: Apply the spawning algorithm (Algorithm 1) at vertex vxi
9: end for

10: Take a step of length d = 0.5 for all snaxels.
11: Run the topology cutting/merging Algorithm 3.
12: Note: At this stage two surfaces exist for each block of faces: one just outside the

boundary and one just inside.
13: remove the outside surface, identifying it using a flood fill on vertices lying on edges

which are in cells with a VOS target of 0.
14: for Each face f i of the r-surface do
15: if f i.parentind.target(VOS)== 0 then
16: Mark f i for removal.
17: Use flood fill to mark all faces, edges and vertices of the r-surface connected to f i

for deletion.
18: end if
19: end for
20: Process requested element removals.
21: Reverse surface direction by flipping snaxels (s.fromvert↔s.tovert and s.d=

1−s.d)
22: Identify snaking grid vertices inside the r-surface using flooding from snaxels origin

vertex.
23: Build r-surface volumes by identifying blocks of internal grid vertices and connected

surfaces.
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1.3.3 Triangulation of Restricted Surfaces into Polyhedra

In order to compute the area and volume of a geometry and drive the 3D-RSVS process

an expression for the shape of those faces is required. While the rules for building the

r-surface guarantee the formation of water-tight surfaces, it does not guarantee that

the surface will be a polyhedron: some of the faces may not be flat. This is because the

r-surface is controlled by the positioning of its vertices with the rest of the geometry

derived from the connectivity information forced by the snaking grid. Since an analytical

solution to the 3D-RSVS formulation has not been found, another approach to define the

position of the boundary is needed.

The most natural approach to arrive at an explicit boundary is to triangulate the

restricted surface. A triangulation guarantees flat faces, meaning that the output of

the process is always a valid polyhedron; in turn this allows reliable calculation of the

volume and area enclosed by the surface. By triangulating all faces with more than 3

edges, regardless of whether they were flat or not, simplifies the implementation of the

volume and area calculations and differentiations as only triangular faces will need to

be processed. In order to be effective in the r-surface context the triangulation needs to

guarantee a smooth response of the area and the volume of the polyhedron; the following

observations are made:

1. the triangulation connectivity must not change when the snaxels move, or in other

words, triangulation connectivity must depend only on r-surface connectivity, this

rule is breached by Figure 1.17a;

2. the triangulation properties (area, volume) must only depend on the geometric prop-

erties of the surface, not on its connectivity, this rule is breached by Figure 1.17b.

In light of these observations, three triangulations are considered in Figure 1.17:

a Delaunay triangulation (Figure 1.17a), a triangulation built by linking every vertex

of the polygon to the average point of those vertices (Figure 1.17b); and, one built by

linking every vertex to the centroid of the curve defining the polygon (Figure 1.17c). The

triangulation relying on the mean position of the vertices fails when a r-surface crosses

through a snaking grid vertex: at that point, multiple vertices will lie very close to each

other, unduly impacting the triangulation. To achieve consistent connectivity and the

smooth response through changes of r-surface connectivity the triangulation of faces is

built around point c̄ which is the mean position of face vertices weighted by edge length.

Equation 1.3 formalises this process for a closed face with n+1 vertices and the last

vertex repeated.
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(a) Delaunay triangulation (b) Triangulation through the
mean of the control points

(c) Triangulation through the cen-
troid of the curve (Equation 1.3)

X
YZ

Y X

Z

X
Y

Z

(d) Triangulation through the centroid for a non-flat face.

Figure 1.17: Triangulation of a pentagon and a pentagon with one moved vertex, and one
repeated vertex with three possible triangulations. Only the contour length weighted
centroid (Figure 1.17c), fulfils the stability requirements of the 3D-RSVS parameterisa-
tion.

c̄=
∑n

i=1 ‖pi+1 −pi‖ (pi+1 +pi)
2

∑n
i=1 ‖pi+1 −pi‖

with : pn+1 =p1 (1.3)

The r-surface face is triangulated by linking this pseudo-centroid of the face to each

of the vertices. This formulation is used as it prevents changes in connectivity, due

to movements of the restricted surface, to cause jumps in the position of c̄; it is not

affected by duplicate points. Figure 1.17 shows the stability of the centroid calculation

with changes of connectivity, allowing smooth evolution of the surface necessary for the

r-surface method to converge on a solution of the 3D-RSVS governing equation.

1.3.4 Evaluation of the 3D-RSVS Equations on the R-Surface

To drive the position of the restricted surface the original continuous area minimisation

problem (Equation 1.1) needs to be discretised in terms of the r-surface snaxel variables.
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(a) Restricted surface (b) Triangulated restricted surface

(c) VOS and snaking domains (d) Triangulated VOS cell faces
active in the volume calculations

(e) Triangulation of VOS cell
faces cut by the r-surface

Figure 1.18: Triangulations necessary for the calculation of the objective function and
constraints of the 3D-RSVS problem.

This process is achieved by expressing the area and volume integrals on the triangulated

surface; a discrete form of the governing mathematical program can then be defined.

The discrete variables used for the 3D-RSVS are very similar to the two dimensional

implementation: the same six properties from the r-surface geometry and the snaxel

positions are needed. These properties are:

• the snaxel index (i), used to reference it in all operations;

• the normalised position along an edge (di ∈ [0,1]);

• the scalar velocity along that edge (vi ∈R);

• the snaxel position in Cartesian coordinates (pi);

• the direction of travel of the snaxel (∆gi) and the vertex of origin (gi,1);

• the normal vectors to the preceding and following edges (ni and ni+1).

These properties were represented graphically in Figure 1.5.

The continuous expressions presented in Section 1.1.1 are easily computed for poly-

hedra with triangular faces. The following notation is adopted: S refers to the r-surface;
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C to cells of the VOS grid. The area of each triangular face (ASk ) is computed using

Equation 1.4, only the position of each of the corner vertices is required (p0, p1, p2).

This approach is also applicable to VS,k, the contribution of face k, to the volume of the

polyhedron. The volume contributions from the underlying grid (VC j ,k) are also taken

into account. Vertices represented by symbol pi,k are active vertices (snaxels or pseudo-

centroids) which move with the surface being designed, static vertices which are part of

underlying grids are represented by symbol gi,k.

AS,k =
1
2

∥∥∥(
p1,k −p0,k

)× (
p2,k −p0,k

)∥∥∥ (1.4)

VS,k =
1
6

(
p0,k ·

((
p1,k −p0,k

)× (
p2,k −p0,k

) ) )
(1.5)

VC j ,k =
1
6

(
g0,k ·

((
g1,k −g0,k

)× (
g2,k −g0,k

) ) )
(1.6)

The equations presented above can be assembled to calculate the volume of the

polyhedron formed by the intersection of the r-surface and the faces of the design
grid, this quantity is represented by value VS∩C, j. Components of this polyhedron are

represented in Figure 1.18.

VS∩C, j =
1
6

jS(q jS)∑
k= jS(1)

p0,k ·
((

p1,k −p0,k
)× (

p2,k −p0,k
))

+ 1
6

jC(q jC)∑
k= jC(1)

g0,k ·
((

g1,k −g0,k
)× (

g2,k −g0,k
))

(1.7)

jS({1, · · · , q jS}) and jC({1, · · · , q jC}) are indexing functions specified for each design

cell selecting the correct vertices respectively from the triangulated r-surface and the

volume grid. The equations for volume and area of the polyhedra formed by the intersec-

tion of the r-surface and the design grid are derived and are now substituted into the

mathematical program which defines the RSVS problem in 3-dimensions (Equation 1.1).

This process leads to Equation 1.2 (repeated below) for the 3D-RSVS discretised by a

triangulated r-surfaces.

min
d

q∑
k=1

AS,k
(
p0,k,p1,k,p2,k

)
with pi,k (d)

s.t.
jS(q jS)∑
k= jS(1)

VS,k
(
p0,k,p1,k,p2,k

)+ jC(q jC)∑
k= jC(1)

VC,k
(
g0,k,g1,k,g2,k

)=Vj ∀ j ∈ {1, · · · ,m}
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Building a 3D-RSVS surface consists in finding the positions d of the r-surface snaxels

which solve the mathematical program of Equation 1.2. This formulation has the benefit

of being very general, it can be tackled on an arbitrary volume grid with any underlying

snaking grid with any optimisation method.

1.3.5 Restricted-Surface Marching

As was the case for the 2D-RSVS the 3D implementation relies on SQP to solve the

minimisation problem defining the 3D-RSVS surfaces. SQP provides convergence in a

limited number of iterations for problems for which derivatives are available, which is

the case for the discrete form of the 3D-RSVS problem presented in Equation 1.2.

The Newton step SQP equations presented below are derived in Boggs and Tolle [5];

only Equation 1.8 for the update of the snaxel velocities is shown here. The evaluation of

the SQP (Equation 1.8) requires the following derivatives to be calculated: the Jacobian

of the constraints (∇dh); the gradient of the objective (∇d f ) and the Hessian of the

objective (Hd f ).

λk+1 =
(
(∇dh)T (Hd f )−1 (∇d f )

)−1 (
h− (∇dh)T (Hd f )−1 (∇d f )

)
∆k+1

d =dk+1 −dk =− (Hd f )−1
(
(∇d f )+ (∇dh)λk+1

)
with : f = A(d) and h=V(d)

(1.8)

Differentiation of f and h was done using the MATLAB Symbolic Toolbox, which

allows analytical differentiation of the terms and the generation of the corresponding C

code. This process greatly reduces the difficulty of differentiating the equations presented

in Equations 1.4 and 1.7 and the risk of a mistake in the implementation. Because the

differentiation is algorithmically developed from the area, volume and centroid functions;

validation of the functions also validates the implementation of the derivatives. The C++

implementation also allows both analytical and finite difference gradients to be used;

comparison showed them to be consistent.

This algorithmic process was applied to the differentiation of:

• AS,k with regard to pi,k;

• VC∩S,k with regard to pi,k.

• c̄ with regard to pi,k.

These differentiations are then expressed in terms of d using the matrix equation chain

rule.
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Figure 1.19: Sparsity patterns of the Hessian of the objective function and the Hessian
and Jacobian of the constraints. These values are for the geometry of Figure 1.7.

While most properties of the RSVS carry over from the two to the three dimensional

implementation, one notable difference is the expected size of the system. Whereas most

2D geometries can be accurately represented with a few hundreds to a few thousand

control points, representation of complex topologies in 3D will usually take thousands

to tens of thousands of snaxels. With large systems solving the SQP rapidly becomes

expensive and methods are required to reduce the cost of the operations. For very large

systems it may be necessary to switch to optimisation methods better suited to very large

numbers of design variables, like Sequential Linear Quadratic Programming (SLQP),

Sequential Linear Programming (SLP), or interior point methods.

The system that must be solved to compute the 3D-RSVS is sparse; this property

can be exploited to speed up calculation for systems of intermediate sizes (thousands

and low tens of thousands of points). Figure 1.19 shows the Hessian and Jacobian of

the constraint and of the objective, for the profile in Figure 1.7. Sparsity is critical in

reducing the memory footprint of the SQP calculation, letting it scale linearly instead

of quadratically with the number of snaxels. The current implementation exploits both

dense [11] and sparse [13] solvers using the Eigen library [16] for matrix mathematics

in C++.
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1.4 Properties of the 3D-RSVS Design Space

In this section, a comparison to minimal surfaces and an equivalence with surfaces of

mean curvature are established. In addition, the wide range of possible design spaces

enabled by the formulation of the 3D-RSVS is explored.

1.4.1 Discrete Differential Geometry as a Foundation of the
3D-RSVS

The study of minimal surfaces concerns itself with the discovery of surfaces of minimal

area for a set of boundary conditions; these surfaces have a physical analogy: (open) soap

films on wire frames. Provided that the air pressure is the same on both faces of the soap

film, these naturally tend to minimise area. To develop solutions for a given boundary

condition, the minimal surface problem can be formulated in a number of ways, one

of which is calculus of variations. The first minimal surface to be described explicitly

was the catenoid by Euler in 1741 (Figure 1.20) followed by the helicoid by Meusnier

in 1776 (Figure 1.21) [28]. While steady progress had been made in the intervening

time, the advent of computers in the 1980s along with the development of advanced

mathematical machinery has allowed an explosion in the number and scope of discoveries

in the field [28].

The relationship between the 3D-RSVS and minimal surfaces is obvious: both aim

to minimise the area functional; however the 3D-RSVS differs in two ways: it is a free

standing closed body, and it has a “pressure differential” between its faces in the form

of the area constraint. In fact, minimal surfaces are part of a broader family of bodies

knowns as surfaces of constant mean curvature (CMC); where minimal surfaces are a

special case of CMCs for which the mean curvature is 0. The mean curvature is simply the

sum of the principal curvatures. Continuing the “soap-film” analogy, surfaces of constant

mean curvature are the result of minimising the area of a boundary between domains at

different pressures: where minimal surfaces are films, CMCs allow bubbles. In general,

the definition of a CMC surface is made in terms of a constrained volume [26, 35, 37],

making the 3D-RSVS an obvious relative of these surfaces. Like minimal surfaces, a

number of analytically described constant mean curvature surfaces exist: spheres, Wente

tori [36], and the periodic P-CMC family [35]; however general explicit solutions for

arbitrary boundary conditions do not exist.

Minimal surfaces and CMCs are found in nature as they allow the minimisation of

internal stresses (films, bubbles and polymer mixtures), and optimise the assignment of
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(a) Soap film forming a catenoid from soap-
bubble.dk [33].

(b) Catenoid (boundary in red)

x = ccosh
(v

c

)
cosu

y= ccosh
(v

c

)
sinu

z = v

where u ∈ [−π,π)
and v ∈R
and c a constant

(c) Catenoid equation

Figure 1.20: Soap films, equivalent minimal surfaces and explicit definitions for the
catenoid.

resources [28] (leaves of holly). These properties have motivated their use in architectural

design and polymer micro structures. While analytical results for the 3D-RSVS may be

out of reach at the moment, the progress in discrete differential geometry offers means

of developing and classifying the results of the parameterisation. Of interest to the

development of the 3D-RSVS are the numerical solvers for CMCs; notably the “Surface

Evolver” by Brakke [6] has had a large impact on the field. This tool allows the evolution

of a large number of surfaces, under a variety volume, boundary (wire-frames) and vertex

constraints; with constant mesh topology. Later developments of these methods have led

to mesh optimizing versions of the Surface Evolver which allowed topological cuts of the

mesh, upon the collapse of faces [26].

From the previous discussion it appears that the 3D-RSVS has a very similar defini-

tion to CMC surfaces, with the difference that the RSVS resolves multiple, local, volume

constraints rather than a single global one for CMCs. The geometry parameterised

by the 3D-RSVS is in fact the solution to a set of simultaneous CMC problems, with

the boundary conditions separating those CMC patches also unknown. Based on the

32



1.4. PROPERTIES OF THE 3D-RSVS DESIGN SPACE

(a) Helicoidal soap bubble, from Exploratorium
Teacher Institute [17]

(b) Helicoid (boundary in red)

x = ucos(cv)
y= usin(cv)
z = v

where u, v ∈R
and c a constant

(c) Helicoid equation

Figure 1.21: Soap films, equivalent minimal surfaces and explicit definitions for the
helicoid.

similar formulations between the 3D-RSVS, and CMCs and the derivation of the two

dimensional RSVS equivalence to non-uniform rational B-Splines (NURBS); it seems a

reasonable hypothesis, that the continuous limit curve of the 3D-RSVS process are G1

continuous CMCs patches.

This hypothesis is supported by Table 1.2 which showed the tendency of the 3D-RSVS

to produce spheres for simple layouts of design variables. While an empirical or analytical

proof of this hypothesis is not provided in this thesis, a path to one is suggested.

1. Solve the 3D-RSVS problem for a set of VOS design variables;

2. for each VOS cells extract the boundaries generated by the intersection with the

r-surface;

3. for each boundary generate a CMC patch using “Surface Evolver” [6] or the PVT-

CMC of Pan et al. [26];

4. compare the surfaces to the RSVS, if the hypothesis is true, the solutions should

converge as the discretisations converge.

It was not followed as this potential relationship was only discovered late in the redaction
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of this document.

The similarity between the 3D-RSVS problem and CMC surfaces has broader im-

plications for the development of the implementation. The CMC and RSVS systems

have similar properties; this suggests that methods used in CMC solvers to guarantee

convergence [7] and smooth meshes [26] may be used to alleviate the current limitations

of the 3D-RSVS. Another implementation of CMC surfaces is available as a plug-in [29]

to the computational aided design (CAD) package Rhinoceros 3D [23]. These tools for the

calculation of discrete CMCs are all interactive, meaning that the current cost of the

3D-RSVS is not intrinsic to the method.

1.4.2 Tailoring of Volume of Solid Grids

The integration of topology optimisation tools and CMC surface engines into CAD distri-

butions reveals that the scope of the 3D-RSVS may be broader than shape and topology

parameterisation for aerodynamics. In fact, the 3D-RSVS is a generic design tool with

close links to structural topology optimisation (STO) density methods, level set methods,

NURBS, and, CMC surfaces. These relationships suggest that the RSVS could be used

interactively as a prototyping tool which natively supports compact and smooth topology

optimisation. While the need for compactness in many optimisation applications has

been reduced by the ubiquity of adjoint solvers, it is necessary that design modes be

intuitive to designers.

While Cartesian VOS layouts are an effective test of the initial implementation of

the parameterisation, these grids do not exploit the somewhat unique flexibility of the

3D-RSVS to generate smooth shapes out of arbitrary design spaces. The use of non-

Cartesian volume spaces, has two benefits: the number of unused design variables for a

given resolution can be significantly reduced, and, modal responses can be tailored to a

geometry. The following four grid modifications are envisaged:

1. global grid deformations: rotations, shears and stretches applied to the grid

to replicate usual engineering design modes (e.g. in aerodynamics span, sweep,

thickness);

2. local grid deformations: would likely behave in a similar way to an FFD control

cage on the design;

3. voxel based refinement: extension of the 2D RSVS refinement process;

4. Voronoi design cells: user defined points form a design space by using their

Voronoi diagram as the VOS cells of the 3D-RSVS, this process allows extreme

flexibility and relatively easy user interface.
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Figure 1.22: VOS mesh generation from a single input point and a padding distance of
0.05.

(a) 4 inputs and padding distance of 0.1.

(b) 4 inputs and padding distance of 0.3.

Figure 1.23: Generation of 4 Voronoi cells for various padding distances, the padding
distances ensures the cells are closed and the edge of the VOS mesh is convex.

Of those four only the global grid deformations and the Voronoi design cells have been

implemented. Examples of the global deformations can be seen in Section 1.2, notably

in Figures 1.7 and 1.8 where the x-wise dimension is stretched to achieve an elongated

body; and in Figure 1.9 where the span is stretched to achieve a wing-like aspect ratio.

The generation of Voronoi VOS meshes is done in 5 steps which are:

1. load user input points the mesh will have a 1 to 1 mapping of point to VOS cells,

with the cell occupying the region surrounding its corresponding point;

2. add padding points these make sure the VOS mesh can be closed and convex at
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(a) 20 inputs and padding distance of 0.05.

(b) 100 inputs and padding distance of 0.1.

(c) 1000 inputs and padding distance of 0.1.

Figure 1.24: Generation of Voronoi design spaces with 20, 100 and 1000 design variables.

the edge of the domain;

3. generate Voronoi diagram using TetGen [31] which is used as the VOS mesh;

4. generate a tetrahedralisation as the snaking grid on which the r-surface will

evolve.

The steps are represented in Figure 1.22 for a single input point (and therefore a single

active VOS cell), steps 1 and 2 are combined inside the first image on the left, steps

then go from left to right. The impact of changing the padding distance is shown in

Figure 1.23 for 4 input points. Examples of Voronoi grids generated with more input

points are shown in Figure 1.24.
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1.5 Integration into Optimisation Frameworks

In order to use the 3D-RSVS for aerodynamic optimisation it must be integrated into a

framework which supports its topological flexibility. The main bottle neck with current

tools are is surface and volume meshing for arbitrary topology; automatic tools are not

widely available and traditional finite volume flow solvers are sensitive to mesh quality.

Nevertheless, the 3D-RSVS is integrated with SU2 [25] an unstructured flow solver

which has been used extensively to tackle aerodynamic shape optimisation (ASO) prob-

lems. Recognising that parameterisation methods for three dimensional aerodynamics

are usually deformative, a method for the exploiting existing high quality geometries

and volume meshes while still exploiting the topological flexibility of the 3D-RSVS is

proposed in Section 1.5.3.

1.5.1 Flow Solving for Optimisation of 3D Topology

In order to perform optimisation using the 3D-RSVS parameterisation a framework

must be capable of running a flow analysis from the geometry without any user input.

Meshing of the geometry is done using TetGen [31], the three dimensional version of the

Delaunay triangulation tool used in Chapter ??. TetGen generates tetrahedral meshes

which can be tailored to a range of applications. In this work TetGen is integrated with

the 3D-RSVS to generate volume meshes from the triangulated geometries. Mesh density

is controlled in a cut-cell-like fashion: element volume constraints are applied on the

mesh through TetGen, with the constraints relaxing away from the body. Figure 1.25

shows the surface and volume meshes for the truncated ogive which was displayed in

Figure 1.8.

This approach to mesh generation allows the tuning of element density at the surface

to achieve the required resolution of flow properties. The mesh generated using TetGen

is suitable for the solution of inviscid compressible flow conditions. An example flow

solution using SU2 is shown in Figure 1.26.

Currently these meshes are not suitable to compressible and viscous flows: the

Reynolds-Averaged Navier-Stokes (RANS) equations are very sensitive to mesh quality at

the surface, and require a smooth prismatic discretisation of the volume in the boundary

layer. While tools exist to grow boundary layer meshes around complex geometries, they

are often designed for industrial scale applications and require a human in the loop;

meshing for RANS is still one of the bottle necks to aerodynamic design [32] and beyond

the scope of this thesis. The scope of the challenges is the reason for adopting a modular
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(a) Surface mesh generated by TetGen from a 3D-RSVS geometry.

(b) Volume mesh generated by TetGen.

Figure 1.25: Surface and volume meshes for flow analysis of a 3D-RSVS geometry
generated by TetGen.
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(a) Surface Cp plots from SU2.

(b) Volume Mach number plots from SU2.

Figure 1.26: Surface pressure coefficients and volume Mach number plots on a 3D-RSVS
geometry for a free stream Mach number of 1.5 in Euler flow using SU2 (CD = 0.00885)
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approach in the development of framework components.

An alternative to the combination of TetGen and SU2 developed here exists com-

mercially in the form of Cart3D [2]. Originally developed by Aftosmis et al. [1], Cart3D

implements an efficient three dimensional cut-cell meshing with adjoint based grid adap-

tion to achieve high quality flow results with limited user input. Originally developed

for inviscid flows, an interactive boundary layer method has been integrated to provide

evaluation of viscous trends in the Cart3D framework [34].

While this system would be suitable for meshing and flow solving, adjoint design

sensitivities for the geometry were not commercially available (although available to

US federal agencies), ultimately motivating the assembly of TetGen and SU2 to solve

compressible flows around complex geometries. Indeed, in three dimensions, the number

of design variables and the cost of evaluating a flow solution are such that gradient

based optimisation with sensitivities calculated through adjoint flow solvers are the

norm. These avoid the excessive computation times that would be the result of agent

based optimisation or finite difference gradients.

1.5.2 Integration of the 3D-RSVS with Gradient Based
Optimisation

In order for the 3D-RSVS to be effective inside an adjoint gradient based flow solver, the

sensitivities of the design variables (the VOS values V) to the aerodynamic forces (CD ,

CL, CM) need to be computed. To get the sensitivity of the flow to the design variables

(∇vF ), the chain rule can be used to separate the contributions of the flow solver and

the parameterisation process (Equation 1.9). For a flow solution F , calculated on a mesh

with vertices at positions p; an adjoint flow solver takes care of calculating the derivative

of the aerodynamic coefficients to the position of surface vertices of the aerodynamic

mesh (∇pF ).

F (p(V))=


CL

CD
...

 ∇vF =∇pF ×∇vp (1.9)

The remaining contribution ∇vp, is the sensitivity of the surface points to changes

of volume fractions used to design the 3D-RSVS geometry. Because the parametrised

contour is the result of an SQP process where the volume fraction is a constraint on the

design (see Equation 1.2), the calculation of derivatives benefits from a wealth of previous

40



1.5. INTEGRATION INTO OPTIMISATION FRAMEWORKS

research into sensitivity analyses for SQP algorithms [9, 14]. Equations 1.10 and 1.11

show how results for the sensitivity analysis of non-linear programs from Buskens and

Mauer [9] can be applied directly to the 3D-RSVS to calculate the change in the r-surface

due to small changes in VOS.

 ∇vd

∇vλ

=−

 HdL ∇dhT

∇dh 0


−1 

(∇T
d∇v

)
L

∇vh

 (1.10)

∇vpi =∇v
(
di∆gi +gi,1

)=∆gi∇vdi (1.11)

As was the case for the two dimensional RSVS simply extracting the responses, is

likely to be insufficient to ensure the smooth integration with gradient based optimisation.

The empirical study in Figure 1.27 shows that the oscillatory response of the RSVS in 2D

can also be found in 3D (c.f. Section ??). These oscillations are likely to be detrimental

to the optimisation behaviours, however these can be resolved the same way they were

in 2D: through design variable combination. Figure 1.27d shows that, by grouping

cells and changing multiple VOS values as a single “mode”, a smoother response is

achieved. Defining the exact grouping of VOS cells and their relative response can be

pre-calculated or optimal groups can be found for each VOS response layout; these

processes were derived in 2D in Section ??.

1.5.3 Exploiting Topological Flexibility for Part Design

One drawback of the RSVS is that it is a constructive approach; while this is a necessary

feature to enable topological optimisation it means that existing surface and volume

meshes cannot be reused. The implication is that the 3D-RSVS cannot be used on large

scale industrial geometries, because, while it is theoretically capable to reproduce the

entire geometry, in practice it would be an extremely difficult endeavour. Instead, it is

suggested that only a portion of a complex geometry would be parameterised, allowing

the optimisation of a part without affecting the rest of the geometry; the 3D-RSVS

and the original discretisation of the geometry being merged through mesh surgery.

Figure 1.28 shows what this approach would look like for the optimisation of winglets

for the NASA common research model (CRM) [24].

Merging the original surface and the partial surface defined by the RSVS relies

on compatible discretisations. Thanks to the flexibility in the shape of VOS cells and

topology of the snaking grid; the 3D-RSVS is capable of matching the discretisation of
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(a) 3D-RSVS surface used for modal analysis. The volume fractions are 0.8 in the flat faces, 0.503 at
the edges and 0.26 in the corners.

(b) Analysis of the flatness of the original top surface of the geometry

(c) Oscillatory response of the surface. (d) Response smoothed with a 20% disturbance
in neighbouring cells.

Figure 1.27: Empirical analysis and smoothing of the response of the 3D-RSVS to small
changes in volume fractions
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Figure 1.28: RSVS design space embedded in the CRM wing-body-tail configuration.
In this configuration only the winglet portion of the design would be modified by the
3D-RSVS.

the original mesh permitting the merge of the geometries at their boundary. Starting

from a high quality volume mesh, the region of the design space parameterised by the

RSVS can be excavated, the TetGen mesher can then be used to generate a “good enough”

mesh which conforms to the RSVS boundary and the cavity inside the original mesh.

While this approach would not be suitable for drag prediction purposes, it would provide

an indication of relative performance sufficient for optimisation.

1.6 Path to Robust Design Using the 3D-RSVS

While the flexibility afforded by the r-surface and the CMC-like smoothness properties of

the 3D-RSVS make it a natural fit for optimisation frameworks some limitations remain

with the current implementation. Addressed in the following sections are three key

challenges, and possible mitigations, that prevent efficient topology optimisation using

the 3D-RSVS. Those are:

• convergence and stability issues in the form of oscillations due to the SQP step;

• the computational cost of repeatedly solving the quadratic program (QP);

• smoothness of the final geometry being insufficient and only controlled by the

snaking grid.
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1.6.1 Convergence and Stability

Optimisation using the 3D-RSVS in general and gradient based optimisation in par-

ticular, require a smooth response of the parameterisation to small changes of design

variables. While the link to CMCs and minimal surfaces suggest that the analytical

response of the 3D-RSVS is smooth away from topological changes; it is a significant

challenge to get the discrete formulation to reproduce those properties. In its current

state the parameterisation does not converge well: without reliable convergence small

changes in VOS may lead to significant difference to the profile. Two main types of

convergence failures have been observed: premature VOS convergence on profiles with

non-minimal area; and profile instability. These are shown in Figure 1.29. These conver-

gence difficulties are the result of the properties of the discrete mathematical program

and its derivatives due to the evolution on the snaking grid: the interaction of the floating

point mathematics of the SQP and the discrete, integer mathematics of the r-surface are

a source of numerical issues.

To understand those issues, it is important to note the difference between the “global”

problem solution that is desired; and the “local” solution which exists for every possible

discretisation. Indeed, the design variables of the global problem are internal variables of

the snaxels (di the normalised distance) and these change with each change of topology

or each crossing of grid vertices: from a pure optimisation stand-point each of these

discretisations is a separate optimisation problem with different design variables. With

this realisation, it naturally follows that each of these separate problems, it they can

solve the volume constraints, has at least one local minimum defined by those design

variables. While many of those are technically “local” minima, in practice they lie at

snaking grid vertices (di = 0 or 1), where the r-surface changes the connectivity for which

this geometry is no longer optimal.

In itself this process is not problematic, however it becomes an issue when taking

into consideration the properties of the derivatives as neighbouring snaxels converge on

the same point. Both in two and three dimensions the objective function ( f (X ,Y )) relies

on a square root term whose first derivative is undefined at the origin and whose second

derivative is hyperbolic (Equation 1.12). Properties of the edge-length derivatives were

discussed in Section ?? (c.f. Figures ?? and ??); and motivated the use of a small constant

ε to stabilise those derivatives around the origin; this process is shown in Equation 1.13.

44



1.6. PATH TO ROBUST DESIGN USING THE 3D-RSVS
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(b) Unstable oscillations.

Figure 1.29: Examples of the convergence issues of the 3D-RSVS.

f (X ,Y )=
√

X2 +Y 2 ∂ f
∂X

= Xp
X2 +Y 2

∂2 f
∂X2 = Y 2(

X2 +Y 2
)3/2 (1.12)

fε(X ,Y )=
√

X2 +Y 2 +ε ∂ fε
∂X

= Xp
X2 +Y 2 +ε

∂2 fε
∂X2 = Y 2 +ε(

X2 +Y 2 +ε)3/2 (1.13)

The presence of undefined and infinite values at the boundaries of validity of a discreti-

sation are a significant computational hazard and must be avoided. Now considering the

properties of the stabilised derivatives when neighbouring snaxels are lying at the same

snaking grid vertex (X =Y = 0), the first derivative is 0 and the second derivative is a

large positive number. Depending on the state of the VOS constraints this point can be

an artificial minimum which satisfies the KKT conditions; unfortunately these artificial
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Table 1.3: Limits and values of the objective function and the two stabilisation schemes.

f (X ,Y ) (eq.1.12) fε(X ,Y ) (eq.1.13) fσ(X ,Y )(eq.1.14)

h 0
p
ε

√
σ2

X +σ2
Y

∂h
∂X

→±1 0 ±1

∂2h
∂X2 →±∞ 1/

p
ε σ2

Y /
√
σ2

X +σ2
Y

minima are indistinguishable from the actual global minima which may lie close or at a

snaking grid vertex. The presence of these minima explains the premature convergence

on geometries with sub-optimal area.

Both the original and stabilised second derivatives get very large as both X and

Y reduce to 0; this can be the initial cause of profile instability. Indeed these large

values sometimes cause very large (107) snaxel velocities which if left unchecked would

lead to rapid traversal of the snaking grid based on false information. In the current

implementation this is avoided by applying aggressive reduction of the step size which

inflicts an additional convergence penalty on the 3D-RSVS with no guarantee that it will

not lead to some oscillations.

Defining Xσ = X + sign(X )σ for X and similarly Yσ for Y

where : sign(x)= 1 ∀x ∈R+and sign(x)=−1 ∀x ∈R−

fσ(X ,Y )=
√

X2
σ+Y 2

σ

∂ fσ
∂X

= X + sign(X )σ√
X2
σ+Y 2

σ

∂2 fσ
∂X2 = Y 2 +2σ |Y |+σ2(

X2
σ+Y 2

σ

)3/2

(1.14)

A theoretically better stabilising equation is suggested in Equation 1.14: by avoiding

a rapid change of the first derivative from approximately 1 to 0 as X tends to 0 the

second derivative can be better behaved. Limits and values of these approaches to

objective function stabilisation are compiled in Table 1.3 and their behaviour is shown

in Figure 1.30. By having a non 0 gradient at the origin the frequency of spurious

minima may be decreased. The challenge of this formulation remains the definition of the

sign(0) which is both -1 and 1 depending on the approach direction. While not currently

implemented because of this perceived limitation, this formulation of the objective could

improve the reliability of 3D-RSVS convergence.
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Figure 1.30: Evolution of the natural objective and the two proposed stabilising methods,
and their derivatives close to X =Y = 0

1.6.2 Solution of the Quadratic Program (QP)

SQP methods are well known for their quadratic convergence on a constrained minima,

even when using approximations of the Hessian; this property is very powerful and

makes them the obvious choice to tackle optimisation of smooth functions. The “Surface

Evolver”, certainly the most widely used and studied discrete CMC solver, uses a Hessian

based quadratic solver, stating that local convergence may be achieved in as low as

four steps [7]. In the case of the 3D-RSVS, for large numbers of design variables (103

snaxels and above) the computational cost of the parameterisation is dominated by

finding sequential solutions to the QP. Normally Newton based methods make up for

this limitation by requiring very few steps to converge; unfortunately because of the

convergence challenges detailed in the previous paragraphs, the number of steps for

RSVS convergence can be large (hundreds).

In order to mitigate the computational cost of the QP solution the structure of the

Hessian matrix can be exploited to accelerate the solution process. Indeed the 3D-RSVS

system is sparse, with the width of the central diagonal unchanging with system size.

This property means that sparse matrix algebra can be used to speed up and reduce

the memory footprint of the QP solution process; current experiments suggest that the

cut-off for a reduction in computational cost is between three and four thousand snaxels.

Algorithms used for sparse mathematics are also more easily parallelisable than

their dense equivalents; the structure of the problem means that regions of the design

space can be more easily separated. The matrix mathematics library used to solve the

3D-RSVS QP, Eigen, supports parallel sparse solvers out of the box [12].

While the cost of the QP can be reduced, for large surfaces it is likely to remain
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Figure 1.31: Examples of flat faces in curved region of the design space.

a bottle neck; as such it may be necessary to consider other optimisation algorithms.

A host of methods have been used and specifically tuned for large scale constrained

minimisation: sequential linear programming, constrained conjugate gradient methods,

interior point methods, multipoint exponential approximation (MPEA) or the quadratic

multipoint exponential approximation (QMEA) [10].

The main limitation of non-quadratic methods is that they do not specify a step length,

which can lead to slow convergence if a robust trust region method is not available. It is

interesting to note that the limits on step size already in place in the snaking algorithm

implicitly set a trust region far from the optimum. Since the benefits of quadratic

programming lie mostly close to the optima, it may be beneficial to swap dynamically

between algorithms; exploiting the simplicity and cheap cost of linear solvers in the far

field, only to use the SQP to arrive rapidly at the minimum once the algorithm is in the

neighbourhood of a minimum.

1.6.3 Smoothness of the Output Surface

Since the r-surface evolves on a predetermined grid according to specific rules, the surface

vertex distribution is not explicitly controlled. In practice, this leads to surface triangles

with poor aspect ratios and wildly different sizes which is generally not conducive

to robust physical modelling. While the surfaces generated by the 3D-RSVS are in

general smooth, the lack of explicit control over the centroid of cells often leads the

parameterisation to generate flat faces even in curved regions of the geometry. This

behaviour creates artificially flat groups of triangles in a part of the geometry which,

according to the governing equation, should have a smooth curvature. Figure 1.31 shows

an example of large, flat, pentagonal faces in a region of otherwise uniform curvature.
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The flattening observed in Figure 1.31 could be resolved by providing the centroid

with its own design variable, limiting movement to be in a normal direction to the face

that spawned it. This additional design variable, would enable the SQP to smooth out

any panelling created by the interaction of the SQP and the centroid calculation process.

The increase in number of design variables due to the addition of almost 1 per face,

would be offset by a reduction in the density of the snaking grid.

While it reduces the impact of the triangulation, this approach does not improve the

control over element size and shape. This approach also has a major downside in that it

looses guarantees of water-tightness and the absence of self intersection.

1.6.4 De-restricting the Surface

The benefits of using a restricted surface are undeniable when it comes to resolving the

topology of a geometry and the connectivity between VOS cells. The efficiency and relia-

bility of the integer collision detection process make it possible to consider very complex

geometries with little computational cost; however that is not the only requirement of

a three dimensional topology parameterisation method. The accumulation of issues at

the interface between the integer mathematics of the restricted surface method and

the continuous solutions of the governing equation suggest that a radically different

approach may be warranted. Indeed convergence, stability and smoothness difficulties

are all, in part, attributable to the use of a restricted surface. This is not to say that it is

not possible to solve these issues within the restricted framework, but it may be more

efficient and robust to consider alternatives.

Inspired by the “Surface Evolver” [6] and its descendants, the possibility to take the

r-surface off the grid is considered. De-restricting the surface would lose the very efficient

topology control, but gain smoother profile progression. For this reason a two step process

is proposed: first the 3D-RSVS is evolved as described in this chapter to resolve topology

and cell connectivity; then it is separated from the snaking grid to finish its convergence

without topology change. By separating the surface from the grid, element distribution

can be controlled; convergence is no longer hampered by changes of design space due to

changes of connectivity; and fewer QP solutions will be necessary.

Using the idea of de-restricting the surface, the complete 3D-RSVS process would

become:

1. Resolve topology through the restricted surface: Use the existing process on

a coarse snaking grid to rapidly converge the topology and cell connectivity.
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2. Place snaxels in “surface space”: generate a pseudo snaking grid which is only

a set of edges normal to the current surface. This allows: maximum code re-use; the

creation of implicit trust-regions, through the length of each edge; and enforcement

of the VOS boundary, ensuring that the snaxels stay on VOS cell boundaries. At

this stage, the surface may be refined.

3. Evolve the “de-restricted” surface: iterate the position of the snaxel along the

pseudo-grid edges, according to the SQP. The edges of the pseudo-grid need not be

constant through the convergence process allowing simultaneous resolution of the

constraints, minimisation of the objective and redistribution of surface elements. A

method similar to the CMC-CVT of Pan et al. [26] is suggested.

1.7 Summary

In its current state the 3D-RSVS cannot compete with existing parameterisations, it

does not have the robustness expected of such methods. Fortunately the causes of these

limitations are understood, evidence shows that they are not intrinsic to the formulation,

and, ways to resolve them have been outlined.

The original goal of three dimensional topology optimisation for aerodynamic bodies

is very close: the necessary flow solvers, meshers and optimisation methods are all

already in regular use even. While the missing link remains a parameterisation which

will describe arbitrary topologies with sufficient smoothness, compactness and flexibility

for aerodynamic application; this chapter has shown the feasibility of parameterising

shape and topology to an aerodynamic optimisation standard.

Beyond its native application in aerodynamic parameterisation, the scope of the

3D-RSVS is much broader. It appears that the formulation of the 3D-RSVS lets it bridge

the gap between level set methods and traditional density methods; while establishing

a footing for the parameterisation in differential geometry. The natural formulation of

the RSVS gives rise to very intuitive behaviours, and the simplicity of the definition

leads to a very general method. The intuitiveness of the method makes it suited for

applications in which it is controlled by a designer, notably for prototyping. In fact the

3D-RSVS has the potential to be a framework for the design of smooth surfaces: new

types of constraints, and, changes of objective function could impart on the 3D-RSVS

most of the features of a CAD framework.
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LIST OF ACRONYMS

Common acronyms

AI artificial intelligence

ANN artificial neural network

CAD computational aided design

CFD computational fluid dynamics

FEM finite element method

FFD free-form deformation

GPL General Public License

ML Machine Learning

NACA National Advisory Committee for Aeronautics

NASA National Aeronautics and Space Administration

NURBS non-uniform rational B-Splines

POD proper orthogonal decomposition

RMS root mean squared

RMSE root mean squared error

RBF radial basis function

SVD singular value decomposition

UIUC University of Illinois in Urbana Champaign
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CHAPTER 2. LIST OF ACRONYMS

Acronyms for optimisers and optimisation methods

ACO ant colony optimisation

BFGS Broyden-Fletcher-Goldfarb-Shanno

CG conjugate gradient

DE differential evolution

EA evolutionary algorithm

GSA gravitational search algorithm

GA genetic algorithm

IPM interior point method

KKT Karush-Kuhn-Tucker condition

L-BFGS limited memory Broyden-Fletcher-Goldfarb-Shanno (BFGS)

MDO multi-disciplinary optimisation

MMA Method of Moving Asymptotes

MMO multi-modal optimisation

MOOP multi-objective optimisation problem

NLP non-linear program

PSO particle swarm optimiser

QD quality diversity

QP quadratic program

SALP simplex algorithm for linear programming

SNOPT Sparse Non-linear OPTimizer

SQP sequential quadratic programming
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Structural topology optimisation

CSD computational structural dynamics

STO structural topology optimisation

BESO bi-directional ESO

ESO evolutionary structural optimisation

FE finite element

HJ Hamilton-Jacobi

LSF level-set function

LSM level-set method

SIMP solid isotropic material with penalisation

Specialist acronyms

ADODG aerodynamics design optimisation discussion group

ASO aerodynamic shape optimisation

ATO aerodynamic topology optimisation

CMC constant mean curvature

CRM NASA common research model

DNS direct numerical simulation

LES large eddy simulation

MLSO multi-level subdivision optimisation

NS Navier-Stokes

SLIC simple line interface contour

PLIC piecewise linear interface contour

RANS Reynolds-Averaged Navier-Stokes
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CHAPTER 2. LIST OF ACRONYMS

RSVS restricted snakes volume of solid

3D-RSVS restricted surface volume of solid

r-snake restricted snake

r-surface restricted surface

SPH smoothed particle hydrodynamics

VLM vortex lattice method

VOF volume of fluid

VOS volume of solid

Kulfan’s WTT Kulfan’s Wind Tunnel Tolerance
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